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Abstract-A full-wave space-domain analysis is presented for
the high-freqnency characterization of microstrip discontinnities.
This approach solves the electric field integral equation (EFIE)
for the surface current density on the microstrip using the
method of moments. The current expansion functions incorporate
the singular edge behavior of the surface current, yielding a
very accurate current modeling. Special attention is devoted to

the analytical treatment of the singular terms in the electric
field Green’s dyadic. The numerical results focus on the S-
parameters of some simple microstrip discontinuities and the

comparison with results obtained with other techniques and from
measurements.

I. INTRODUCTION

M

IC and MMIC designers rely highly on microwave

CAD tools to reduce the design cycles of microwave

integrated circuits. In modern and future high-speed digital

systems, high-frequency effects play an important role, as the

integration density increases and bandwidths become larger

(bit rates of 150 Mb/s and more). Degradation of signals

transported along microstrip interconnection lines is not only

caused by the inherent dispersion characteristics of the mi-

crostrip lines, but is also influenced by the reactive (evanescent

higher order modes) and resistive (radiation of surface and

space waves) effects that occur at line discontinuities (step-in-

width, bend, T-junction, etc.).

Microstrip discontinuities, together with microstrip line seg-

ments are the basic elements of microstrip integrated circuits.

In order to provide the designers with a CAD tool that

accurately predicts the electromagnetic behavior of microwave

circuits (filters, couplers, resonators, etc.), an accurate high-

frequency characterization of these discontinuities by means

of a rigorous full-wave analysis is required. Full-wave analysis

techniques for microstrip discontinuities are proposed and

discussed in a large body of technical literature [2]-[4]

[7]-[15]. In time-domain analysis, several numerical schemes

can be used, however the finite-difference time-domain method

(FDTD) is by far the most popular one [7], [11], [14]. The

major drawbacks of the FDTD technique are the imperfection

of the absorbing boundary condition and the large memory

and CPU-time requirements.
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In the frequency domain, the integral equation method

provides very versatile method-of moment techniques for char-

acterizing microstrip planar structures. The electromagnetic

behavior of the planar circuit is described by either a mixed

potential integral equation (MPIE) for the surface current

and charge [4] or an electric field integral equation (EFIE)

for the current [2], [12], [15]. The planar circuit is divided

into rectangular and/or triangular cells. Subsectional basis

functions are used in the expansion of the two unknown current

components. The charge is derived from the current. From the

solution of the integral equation follows the current and the S

parameters of the circuit under study.

The elements of the impedance matrix of the discretized

integral equation can either be calculated in the spectral

domain or in the spatial domain. The spectral domain ap-

proach is very efficient for microstrip structures on a substrate

enclosed in a box when a uniform grid is used. In that

case special approaches based on FFT techniques can be

used [3], [10], [13]. However, the accuracy of the results

is often influenced by the presence of box resonances and

radiation losses can only be taken into account approximately,

by modeling the top cover of the box as a surface impedance

wall of 377 0/s. These losses sometimes play an important

role in the degradation of the circuit performance.

A powerful advantage of the spatial-domain approach is

the possibility to precalculate the Green’s dyadic and store

the results in a database. The spatial-domain Green’s dyadic

only depends on the characteristics of the layered medium in

which the planar structure is embedded, not on the geometry

of the planar structure itself. Since the microwave designer

will not often change the technology and hence the layered

medium, but will optimize the circuit performance by making

small changes to the geometry of the planar structure, it

is obvious that the spatial-domain Green’s dyadic database

approach makes the technique very efficient for microwave

CAD applications.

The approach presented in this paper is based on the electric

field integral equation for the surface current and uses such a

database technique for the spatial domain Green’s dyadic. The

derivation of the relevant electric field Green’s dyadic suited

for this purpose has been presented elsewhere [6]. The EFIE
is solved by the method of moments. The sucface current is

expanded into bilinear basis functions in the nonboundary cells

of the grid and into special functions in the corner and edge

cells. The latter functions take the well-known square root edge
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Fig. 1. A general N-port microstrip discontinuity with connecting feedlines

Lk (k = 1,.. . ,3) and single-port excitation. A rectangular grid is used to
subdivide the microstrip discontinuity. The inset shows the local coordinate

system associated with each feedline.

behavior into account [1], [5]. This results in a very accurate

current modeling. The circuit is excited by the fundamental

mode propagating on each port transmission line. The integral

equation is tested with pulse functions. In contradistinction to

other spatial techniques, the elements of the impedance matrix

are calculated starting from the electric field Green’s dyadic

kernel. Special attention is devoted to the analytical treatment

of the singular terms which occur in the electric field Green’s

dyadic.

The numerical results focus on the S parameters of some

simple microstrip discontinuities for which published results

exi8t. As will be shown, the results obtained with our simu-

lation technique agree very well with the simulation results

obtained with other techniques and with experimental data

found in literature. A detailed error analysis of the comparison

with the experimental results is not included, since no error

bars were provided by the authors of the experimental data.

II. GENERAL FORMULATIONS

A general N-port microstrip discontinuity is shown in

Fig. 1. It consists of a discontinuity region together with N

connecting feedlines Lk (k = 1, . . . . N). Part of the lines is

taken up into the discontinuity, accounting for the reactive

effects of the evanescent higher order modes near the feedline-

discontinuity junction. Outside this region, it is assumed

that the connecting lines only propagate the lowest order

fundamental eigenmode.

The microstrip structure is excited at its ports with the

incoming fields associated with the fundamental eigenmode.
The incoming currents .7z’ (r) (k = 1,..., N) are scattered at

the microstrip discontinuity and outcoming (reflected and/or

transmitted) currents JT’ (r) (k = 1,..., N) propagate along

the feedlines. The calculation of these currents yields the nor-

malized S parameters of the N-port microstrip discontinuity.

Renormalization of the S parameters to 50 Q, or any other

desired value, makes them suitable for use in microwave CAD

applications.

The associated electromagnetic field problem is described

by an electric field integral equation (EFIE) for the surface

current density, which follows form imposing the boundary

condition, i.e., the zero tangential electric field on the mi-

crostrip surface (Z = d). This leads to

= +(?.)

(1)

where Ein is the excitation field associated with the incoming

currents. Strictly speaking, (1) is obtained from a limiting

process in which the observation point r approaches the planar

structure located in the plane z = d from outside this plane.

We have carefully retained this limiting operation outside the

integration as this will be important in the sequel.

The kernel of (1) is the space-domain electric field Green’s

dyadic GE(r, r’) of the layered medium in which the planar

circuit is embedded. The EFIE is solved using the method of

moments. The microstrip discontinuity is gridded up into a

finite number of uniform rectangular subsections or cells Sj

(as shown in Fig. 1). The surface current is modeled with sub-

sectional basis functions {bo,j(r), /3 = z, y,j = 1, ..., M}

described in Section III. The incoming and outcoming currents

on the kthe feedline are given by

Jzk(r) = jk(sk)e –~okrk ~Tk

li@kVk ~vk . (2)JT’ (r) = –~kjk(sk)e

In (2), (r-~, Sk) is a local coordinate system associated with the

kth feedline, j~ (sk) and ~k are the transverse current depen-

dence and propagation constant of the lowest order eigenmode

and Tk is the unknown current reflection or transmission

coefficient. The propagation constant is calculated using an

analytical formula [16]. The current profile in the transverse

direction is approximated by the Maxwell distribution (3).

Only the longitudinal current component of the incoming mode

is considered on the feedline as the transversal component is

an order of magnitude smaller:

jk(sk) = A~ky*” ‘3)
The EFIE is tested with a set of Al subsectional pulse

functions {ta,i(r) = 1, a = z, y, i = 1,..., M}, yielding

a system of ill linear equations, in the M unknown current

expansion coefficients and N unknown reflectionhransmission
coefficients. The extra N equations, necessary to solve the

problem, are obtained by imposing the continuity of the
total longitudinal current across the joint boundary of the

discontinuity region and each connected feedline Lk, k =

1,... , N. The latter equations are referred to as the line-

matching equations. The integral equation (1) is transformed

into the following matrix equation:

[

[z~] [Zy] [z~q [1,]

][[1

[~]

[-w] [-%?’1 p$] [1] = f?’ll (4

h~] [zi7’] [z#T] [Tk]



SERCU et al.: FULL-WAVE SPACE DOMAIN ANALYSIS 1583

where the indices i and -j range over all the gridcells 1, ..., M

and the indices k and 1 range over all the feedlines 1, . . . . N.

The first two sets of rows in (4) follow from the testing of the

EFIE, while the last set of rows (indicated with the superscript

M) results form the line-matching equations. The coefficients

of the latter equations are easily calculated analytically. The

elements of the submatrices [z@] (a, ~ = z, y) describe the

coupling between an excitation cell Sj with current basis

function b~,j (?’) and an observation cell S~ with associated
test function ta,i (T). The calculation of these cell-cell cou-

pling elements will be discussed in Section IV where special

attention is paid to the Green’s functions singularities.

III. CURRENT MODELING

For the purpose of this paper, we have chosen a uniform grid

of rectangular subsections to grid up the discontinuity region,

as illustrated in Fig. 1. The elementary dimensions of each

cell are Dz and Dv. Taking the symmetry properties of such a

grid into account, together with the translational invariance of

the layered medium in the lateral (x, y) plane, we can speed

up the calculations of the Z-matrix elements significantly.

We distinguish four types of grid cells, as shown in Fig. 1,

depending on their position relative to the boundary of the

planar structure, In a bulk cell (cell type 1), we use a

bilinear expansion function (equation (5a)) to model both

components of the current (see Fig. 2(a)). This basis function

is modified for the boundary cells to incorporate the singular

behavior of the current near the edge of the microstrip. This

edge condition, described by Meixner [1], implies that the

component of the current parallel to the edge becomes singular

as 1/W, while the transversal component of the current goes

to zero as W, d being the distance to the edge. The current

basis functions (equation (5b)) for edge cells (cell type 2) takes

this edge behavior into account, as illustrated in Fig. 2(b).

The modeling of the current in the corner cells (cell types 3

and 4) is chosen such that the square root dependencies of both

longitudinal and transversal components are matched, without

violating the current continuity condition, i.e., current must

be continuous in the direction of current flow. For an inner

corner cell, the current basis function (equation (5c)) is given

by simply taking the product of both square root dependencies

as illustrated in Fig. 2(c). For an outer corner cell, the matching

is achieved with the use of the special shape function g(z, y)

on which the square root dependencies (equation (5d)) are

superimposed. Fig. 2(d) shows the basis functions used for an

outer corner cell and Fig. 3 shows the special shape function

g(x, y).

( .)(1-3 ‘5a)L(r, y) = by(%y) = 1 – ;

( J(l-a-1’2bz($, t) = 1 – ~

( J(l-&)l’2bv(z, y) = 1 – ~

bx(x, y)=b

(a)

bx (
by

(b)

(c)

*

bx (

(d)

Fig. 2. The current expansion functions for the four types of grid cells.
(a) Bulk cell. (b) Edge cell. (c) Inner corner cell. (d) Outer comer cell.

9(

(5b) Fig. 3. Special shape function g(z, y) used to match the square root depen-
dencies of the current components in an outer comer cell.
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6.(Z, y) = g(z, y) 1 – ;
Y

()

1/2
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IV. EVALUATION OF THE CELL-CELL COUPLING ELEMENTS

The calculatim c)f the Z-matrix elements is crucial to the

solution of the EFIE. The general form of these elements is

Z,~6 = lim
//

Cwta,j(?-)
/./

CM”
Z+d ‘$ s,

(5C)

(5d)

In general, the Green’s functions WO(p,,z) and W2(p, z)

exhibit a singularity forp= O. This singular term is extracted

analytically. The remaining regular parts, given as a Sommer-

feld type of integral, are precalculated for a small number of p

values and tabulated in a database. A second-order Lagrange

interpolation scheme is used to retrieve the results from this

database, for any value of p. A powerful advantage of this

technique is the ability to model multilayered substrates by

simply replacing the database for the single-layered Green’s

dyadic by the database for the multilayered Green’s dyadic.

The general results in [6] for the singular parts of the

W,(p,,z) functions lead to

VV:ing(p, 2) = g~
p’ – ‘2~’

(P2 + ~2)5/2

1
+ (92 +91)

(P2 + ~2)v’

W;ing(p, z) = g~
–3p2

(6)
(P2 + ~2)5/2

a,(?=.z, y. (7)

The two space-domain integrations over the observation and

excitation cell can be carried out numerically for most Qf the

cell–cell pairs, using simple Gaussian quadrature formulas.

However, the elements for which the test and basis functions

coincide (self-patch coupling) or overlap (nearest neighbor

coupling) must be calculated analytically, in order to take the

Green’s dyadic singularities correctly into accQunt.

In [6] it is shown that the electric field Green’s dyadic can

be derived from two scalar functions W’. (p, z) and W2 (p, z).

The four tangential components needed in our simulation are

given by

[

Wo(p, 2) – W’(p, 2) COS20 –W’2(p, 2) sin 219
–W’(p, 2) sin20 Wo(p, z) + W’(p, 2) Cos 2I

(8)

where r – r’ = p(cos 9uz + sin dug) + (2 – ci)uz. Polar

coordinates (p, 0) are used to denote the lateral separation

between the excitation and the observation point. The

numerical procedure described in [6] makes the calculation

of the Green’s dyadic possible fm layered structures with an

arbitrary number c)f lossless and/or dielectric and magnetic

layers.

+(g2_g1)[(P’+@’2-q2 ,9)

~2(p2 + ~2)v’

where

(lo)

In (9) 6 = z – d represents a small distance above the

microstrip structure and gl, g2, and g3 are complex coefficients

depending only on the frequency and the complex relative

permittivity and permeability of the microstrip substrate. The

terms in (9) depending on g3 give rise to a 1/p3 singularity y, as

6 goes to zero. The other terms give rise to a l/p singularity.

The contribution to the cell–cell coupling associated with

the regular part of the Green’s dyadic presents no calculational

difficulties and can easily be computed numerically. For the

evaluation of the self-patch and nearest neighbor coupling

terms, the contributions coming from the singular part must

be calculated analytically. At this point however, it can be

seen that it is not allowed tQ interchange the integrations in
the self-patch and nearest neighbor integrals and the limiting

process 6 -+ O, as this leads to divergent results for the
l/p3 singularity. In order to evaluate these integrals correctly,

h is necessary to start form the values (9) with d # O.

One of the two space-domain integrations in (7) must be

performed analytically at a small distance 6 abcwe the planar

structure. It is obvious that the integration over the observation

cell is performed first, as the simple pulse test functions

are much easier to deal with than the current expansion

functions. We therefore interchange the integration over the

excitation cell with the integration over the observation cell.

For the contribution Qf the singular part, expression (7) is
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replaced by

zt;~,sin 9 ‘// risb~,j(7-’)
s,

{ //
. lim dSG 1:$’y,?’’)ta,t(r). (11)

z~d s%

Theuseof simple pulse test functions {ta,i(~)= I,cx=z, y,

‘i = 1, . . . ,A4} allows the second integral in (11) to be

calculated analytically with 6 # O. After this step, the limit
b+ Ocanbe carried out, yielding a nondivergent excitation

integral. Results of these calculations are given in the Ap-

pendix for an observation cell of general polygonal shape. In

the final step, the excitation integral is calculated numerically

using simple Gaussian quadrature formulas for the bulk cells

and appropriate Gauss–Jacobi quadrature formulas for the

boundary cells, taking the special square root edge behavior

of the current basis functions into account.

V. INUMERICAL RESULTS

A. Microstrip Stub

The presented technique has been applied to characterize the

microstrip stub configuration shown in the inset of Fig. 4(a).

This structure is found in several publications [8], [9]. The mi-

crostrip single stub contains two discontinuities: a T-junction

and an open end. It is printed on an alumina substrate with

thickness d = 1.27 mm and relative dielectric constant ET =

10.65. The line width W and the stub length L are equal

to 1.4 and 2.1 mm, respectively. Fig. 4(a) shows the phase

and Fig. 4(b) the magnitude of the simulated S21 scattering

parameter. Also included in the plot are the results from

previously published data obtained with the spectral-domain

technique [8] and from measurements [8]. As shown in Fig. 4,

the agreement between our technique and the measurements

is very good. The resonance frequency of the microstrip stub

lays just beyond 10 GHz, which is predicted correctly by the

simulation results.

The full-wave analysis presented in this paper includes all

high-frequency effects such as coupling, radiation, and surface

waves. Radiation losses form open microstrip circuits can be

significant at microwave and millimeter-wave frequencies. To

illustrate this radiation effect, Fig. 4(b) shows the quantity
G = ISll 12 + IS2112, which follows from the full-wave

analysis. (1 – G) represents the fraction of incident power

lost in the microstrip discontinuity. For a lossless substrate,

this power loss is totally due to radiation. The plot of G shows

that in the considered frequency range, the calculated radiation

loss reaches a peak of about 27% just below 11 GHz.
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Fig. 4. Scattering parameters of a microstrip single stub calculated with the
spatial and tbe spectral domain technique [8]. (a) Phase of Sz 1. (b) Magnitude
of Szl and IS1112 + 1SZ112.

the scattering parameters S1l and Sjl are shown in Fig. 5(a).

The value of G = ISII 12+ 1S2112is plotted in Fig. 5(b). The

results are compared with published data calculated with the

finite-difference time-domain technique [14] and with mea-

surements [14]. Again the agreement with the experimental

results is found to be very good, which validates the theoretical

results. The oscillations in the experimental plots are due to the

imperfect connector-strip transition. The difference between

G and unity shows that at the considered frequencies, an

important part of the incident power is radiated by the corner

into space and surface waves.

C. Double-Loop Meander Line

B. Microstrip Bend
The third example considers the double loop meander line

configuration presented by Wertgen and Jansen [10]. The

The next example discussed here is the analysis of the structure is printed on a 25-roil standard alumina substrate

microstrip bend discontinuity shown in Fig. 5. It was mainly of measured relative dielectric constant sr. = 9.978 with

chosen for further verification of our technique by comparison unknown precision, i.e., no +/– tolerance is specified in [10].

with measurements. The epoxy substrate has a thickness of The other relevant parameters are W = 0.61 mm, S = W/2,

d = 1.6 mm and a relative dielectric constant ST = 4.5. and L = 4W. Multiloop meander lines are frequently used in

The width W of the microstrip is 3 mm. The magnitudes of the design of traveling-wave FET amplifiers for their slow-
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Fig. 5. Scattering parameters of a microstrip bend. (a) Magnitude of S11

and S21. (b) Magnitude of 1S1112 + 1S2112.

wave properties. The meander line contains several tightly

coupled 90° bends. The electromagnetic coupling between two

bends, spaced by only half a substrate thickness or less, has

a very important effect on the slow-wave properties of the

structure.

The results of the numerical simulation are presented in

Fig. 6(a)–(c). Also shown in Fig. 6 are theoretical results

obtained with a closed-box spectral domain technique [10]

and open experimental data [10]. The agreement between

the numerical results and the experimental data is very good

in the whole frequency range. In addition, it can be seen

that the closed-box simulation results show some deviations

form the measured plots, especially for frequencies beyond

11 GHz. These deviations are mainly due to the absence of

radiation losses in the closed-box simulation technique. This

is confirmed by the plot of IS1112+ ISzl 12(Fig. 6(c)). It shows

that the power loss due to radiation becomes significant (>5%)

for frequencies beyond 11 GHz.

VI. CONCLUSIONS

A full-wave space-domain technique has been presented

for the simulation of the high-frequency S parameters of

microstrip discontinuities. This technique is based on the
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Fig. 6. Scattering parameters of a microstrip double loop meander line calcu-
lated with an open- and a closed-box simulation technique [10]. (a) Magnitude

of S11. (b) Magnitude of .921.(c) Magnitude of IS1112 + 1s21 12.
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eleetric field integral equation for the surface current on the

microstrip structure. A suitable electric field Green’s dyadic

describes the layered medium in which the microstrip structure

is embedded. The database approach of this Green’s dyadic

makes the technique very efficient.

To solve the integral equation, the method of moments was

applied. A correct handling of the self-patch and nearest neigh-

bor coupling was only possible starting from the analytical

knowledge of the singular behavior of the Green’s dyadic.

The current basis functions, used to model the surface current

density in the microstrip structure, incorporate the singular

edge behavior of the current.

The numerical results focus on some simple microstrip dis-

eontinuities for which published results exist. ,The comparison

of our results with the published data allowed the validation of

the proposed technique. Future research will be focused on an

extensive comparison of the current basis functions introduced

in this paper (bilinear including the singular edge behavior)

with the more traditional rooftop basis functions.

APPENDIX

The following integrals are involved in the calculation of

the observation integrals (11):

All(r’) =
J’/

dS~
s, P

Alz(r’) = (r’) =
//

dS~ COS20
s% P

Ala(T’) =
II

dS~ sin 20
s%

A31(r’) = #iO
//

ds pz – 262

s. (pz + 62)5/2

//

2

Asz(r’) = lim
6+0 s . ‘s (P2 +P82)5,2 Cos ’28

/’/

2
A33(r’) = ji:o

s%
dS (P2 +P62),,2 sin 26. (Al)

The limiting operation 6 a O has been carried out for the

integrals of the first column, as the 1/p singularity can be

integrated analytically over the observation cell. This however

cannot be done for the integrals of the second column. The

l/p3 singularity is too strong to be integrated directly. The

integrals in (Al) are calculated using the polar coordinates

introduced in (8). The integration domain Si (which can be

of general polygonal shape) is divided into a finite number of

oriented triangles S\m), as indicated in Fig. 7(a) for a general

quadrangle.

The results of the integrations over the oriented triangle

S(m) are given below. The relevant parameters of the oriented%
triangle Si‘m) used here are illustrated in Fig. 7(b). L$m) is the
distance between ~’ and side m of the observation cell S;.

m

An(r’) = ~ [(djm)(r’) – afm)(r’)) cos XI$m)
m

m=2

a

/

Y

I

I s, “ m. 1
+ /’

I //
l,, m=4 . .
~ ,’ /’s{m) ---
,,,/ ,..
1/, ~-’

r’lPO

x

(4

D
Y-Y!

+’) m
.

~~(m,.”

$’)&;
/“” ~(m)

o x-x’

(b)

Fig. 7. (a) The observation cell S, is divided into a finite number of

oriented triangles. (b) Relevant parameters of the oriented triangle S!’) in
the (z-z’, y– y’) coordinate system.

– a$m)(r’) sin 20~m)1
Als(r’) = ~ [(aim) (r’) – a~m) (r’)) sin 20~m)

m

+ aim) (r’) cos 26$m)1 (A2)
J

with

~p (Tt) = &)

“[(
(~) _ ~fpCos f3~ )(l+sin(o~m)-on)’

( (~) _&4Cos 02 )O+s+w -4m)))
a~m)(r’) = 2L~m)

“[ ( )(
(m) _ @$m) _ sin ~$m) _ ~~m)sin r32 )1

a$m)(r’) = - 2L$m)

“[ ( ‘m) -’$’)) -cos(’~m) -’$))1Cos02
(A3)

A31(r’) = ~ @[m) (r’)

m

‘m)(r’)) sin 20~m)A32(r’) = ~ [(@jm) (r’) + ~1
m

h(r)) = ~ [(dim)(r’)+ P[m)(r’)) cos 2MI$m)
m

+P$m) (r’) sin 2d~m)1 (A4)
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with

d%’) =- *
o

“[ ( )((m) _ ~$m) _ ~i~ @[m) – @$m)sin t’2
)1

p$)(r’) = *

o

[(
. sin3 ~~m) –

‘~m)) -sin3(ofm) -“$))]
&y#) = --&

o

[(. ~os3 o:m) _

‘$’)) -cos3(of) -of))]~
(A5)
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