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Full-Wave Space-Domain Analysis of Open
Microstrip Discontinuities Including the
Singular Current-Edge Behavior
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Abstract— A full-wave space-domain analysis is presented for
the high-frequency characterization of microstrip discontinuities.
This approach solves the electric field integral equation (EFIE)
for the surface current denmsity on the microstrip using the
method of moments. The current expansion functions incorporate
the singular edge behavior of the surface current, yielding a
very accurate current modeling. Special attention is devoted to
the analytical treatment of the singular terms in the electric
field Green’s dyadic. The numerical results focus on the S-
parameters of some simple microstrip discontinuities and the
comparison with results obtained with other techniques and from
measurements.

I. INTRODUCTION

IC and MMIC designers rely highly on microwave

CAD tools to reduce the design cycles of microwave
integrated circuits. In modern and future high-speed digital
systems, high-frequency effects play an important role, as the
integration density increases and bandwidths become larger
(bit rates of 150 Mb/s and more). Degradation of signals
transported along microstrip interconnection lines is not only
caused by the inherent dispersion characteristics of the mi-
crostrip lines, but is also influenced by the reactive (evanescent
higher order modes) and resistive (radiation of surface and
space waves) effects that occur at line discontinuities (step-in-
width, bend, T-junction, etc.).

Microstrip discontinuities, together with microstrip line seg-
ments are the basic elements of microstrip integrated circuits.
In order to provide the designers with a CAD tool that
accurately predicts the electromagnetic behavior of microwave
circuits (filters, couplers, resonators, etc.), an accurate high-
frequency characterization of these discontinuities by means
of a rigorous full-wave analysis is required. Full-wave analysis
techniques for microstrip discontinuities are proposed and
discussed in a large body of technical literature [2]—[4]
[71-[15]. In time-domain analysis, several numerical schemes
can be used, however the finite-difference time-domain method
(FDTD) is by far the most popular one [7], [11], [14]. The
major drawbacks of the FDTD technique are the imperfection
of the absorbing boundary condition and the large memory
and CPU-time requirements.
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In the frequency domain, the integral equation method
provides very versatile method-of moment techniques for char-
acterizing microstrip planar structures. The electromagnetic
behavior of the planar circuit is described by either a mixed
potential integral equation (MPIE) for the surface current
and charge [4] or an electric field integral equation (EFIE)
for the current [2], [12], [15]. The planar circuit is divided
into rectangular and/or triangular cells. Subsectional basis
functions are used in the expansion of the two unknown current
components. The charge is derived from the current. From the
solution of the integral equation follows the current and the S
parameters of the circuit under study.

The elements of the impedance matrix of the discretized
integral equation can either be calculated in the spectral
domain or in the spatial domain. The spectral domain ap-
proach is very efficient for microstrip structures on a substrate
enclosed in a box when a uniform grid is used. In that
case special approaches based on FFT techniques can be
used [3], [10], [13]. However, the accuracy of the results
is often influenced by the presence of box resonances and
radiation losses can only be taken into account approximately,
by modeling the top cover of the box as a surface impedance
wall of 377 Q/s. These losses sometimes play an important
role in the degradation of the circuit performance.

A powerful advantage of the spatial-domain approach is
the possibility to precalculate the Green’s dyadic and store
the results in a database. The spatial-domain Green’s dyadic
only depends on the characteristics of the layered medium in
which the planar structure is embedded, not on the geometry
of the planar structure itself. Since the microwave designer
will not often change the technology and hence the layered
medium, but will optimize the circuit performance by making
small changes to the geometry of the planar structure, it
is obvious that the spatial-domain Green’s dyadic database
approach makes the technique very efficient for microwave
CAD applications.

The approach presented in this paper is based on the electric
field integral equation for the surface current and uses such a
database technique for the spatial domain Green’s dyadic. The
derivation of the relevant electric field Green’s dyadic suited
for this purpose has been presented elsewhere [6]. The EFIE
is solved by the method of moments. The surface current is
expanded into bilinear basis functions in the nonboundary cells
of the grid and into special functions in the corner and edge
cells. The latter functions take the well-known square root edge
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Fig. 1. A general N-port microstrip discontinuity with connecting feedlines
Ly (k=1,---,3) and single-port excitation. A rectangular grid is used to
subdivide the microstrip discontinuity. The inset shows the local coordinate
system associated with each feedline.

behavior into account [1], [5]. This results in a very accurate
current modeling. The circuit is excited by the fundamental
mode propagating on cach port transmission line. The integral
equation is tested with pulse functions. In contradistinction to
other spatial techniques, the elements of the impedance matrix
are calculated starting from the electric field Green’s dyadic
kernel. Special attention is devoted to the analytical treatment
of the singular terms which occur in the electric field Green’s
dyadic.

The numerical results focus on the S parameters of some
simple microstrip discontinuities for which published results
exist. As will be shown, the results obtained with our simu-
lation technique agree very well with the simulation results
obtained with other techniques and with experimental data
found in literature. A detailed error analysis of the comparison
with the experimental results is not included, since no error
bars were provided by the authors of the experimental data.

II. GENERAL FORMULATIONS

A general N-port microstrip discontinuity is shown in
Fig. 1. It consists of a discontinuity region together with N
connecting feedlines Ly (k=1,---,N). Part of the lines is
taken up into the discontinuity, accounting for the reactive
effects of the evanescent higher order modes near the feedline-
discontinuity junction. Outside this region, it is assumed
that the connecting lines only propagate the lowest order
fundamental eigenmode.

The microstrip structure is excited at its ports with the
incoming fields associated with the fundamental eigenmode.
The incoming currents J'(r) (k= 1,--., N) are scattered at
the microstrip discontinuity and outcoming (reflected and/or
transmitted) currents J7+(r) (k= 1,---, N) propagate along
the feedlines. The calculation of these currents yields the nor-
malized S parameters of the N-port microstrip discontinuity.
Renormalization of the S parameters to 50 €2, or any other
desired value, makes them suitable for use in microwave CAD
applications.

The associated electromagnetlc field problem is described
by an electric field integral equation (EFIE) for the surface
current density, which follows form imposing the boundary
condition, i.e., the zero tangential electric field on the mi-
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crostrip surface (z = d). This leads to

lim// GE (r,¢")J.(r'") + GE (rr)J(r)]dS’

z—d
—-ER ()
zh_rgl// GE (r,7)Ju(r ’)+G y(r7) y(r')] ds’
= —E';n('r')
)

where E" is the excitation field associated with the incoming
currents. Strictly speaking, (1) is obtained from a limiting
process in which the observation point 7 approaches the planar
structure located in the plane z = d from outside this plane.
We have carefully retained this limiting operation outside the
integration as this will be important in the sequel.

The kernel of (1) is the space-domain electric field Green'’s
dyadic GE(r,r’) of the layered medium in which the planar
circuit is embedded. The EFIE is solved using the method of
moments. The microstrip discontinuity is gridded up into a
finite number of uniform rectangular subsections or cells S;
(as shown in Fig. 1). The surface current is modeled with sub-
sectional basis functions {bg ;(r),8 = =,y,5 = 1,---,M}
described in Section III. The incoming and outcoming currents
on the kthe feedline are given by

T (r) = jr(sk)e P ruy,
JTe () = ~Tijk(sk)e?Pemou,, . 3]

In (2), (7, s&) is a local coordinate system associated with the
kth feedline, ji(si) and Sy are the transverse current depen-
dence and propagation constant of the lowest order eigenmode
and T} is the unknown current reflection or transmission
coefficient. The propagation constant is calculated using an
analytical formula [16]. The current profile in the transverse
direction is approximated by the Maxwell distribution (3).
Only the longitudinal current component of the incoming mode
is considered on the feedline as the transversal component is
an order of magnitude smaller:

jk(sk)=W{i7r LI 3

_ (2Sk )2
Wi

The EFIE is tested with a set of M subsectional pulse
functions {toi(r) = 1, = z,y,4 = 1,---, M}, yielding
a system of M linear equations, in the M unknown current
expansion coefficients and N unknown reflection/transmission
coefficients. The extra N equations, necessary to solve the
problem, are obtained by imposing the continuity of the
total longitudinal current across the joint boundary of the
discontinuity region and each connected feedline Ly, k =
1,---,N. The latter equations are referred to as the line-
matching equations. The integral equation (1) is transformed
into the following matrix equation:

[zz7] (2] [257] [12] v
(] (2] (28] | |1M] =] v | @
] (o] ) L) LB
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where the indices ¢ and j range over all the gridcells 1,---, M
and the indices k£ and [ range over all the feedlines 1,---, N.
The first two sets of rows in (4) follow from the testing of the
EFIE, while the last set of rows (indicated with the superscript
M) results form the line-matching equations. The coefficients
of the latter equations are easily calculated analytically. The
elements of the submatrices [Z%°] (o, 8 = z,y) describe the
coupling between an excitation cell S; with current basis
function bg ;(r) and an observation cell S; with associated
test function ¢, ;(r). The calculation of these cell-cell cou-
pling elements will be discussed in Section IV where special
attention is paid to the Green’s functions singularities.

III. CURRENT MODELING

For the purpose of this paper, we have chosen a uniform grid
of rectangular subsections to grid up the discontinuity region,
as illustrated in Fig. 1. The elementary dimensions of each
cell are D, and D,,. Taking the symmetry properties of such a
grid into account, together with the translational invariance of
the layered medium in the lateral (z,y) plane, we can speed
up the calculations of the Z-matrix elements significantly.

We distinguish four types of grid cells, as shown in Fig. 1,
depending on their position relative to the boundary of the
planar structure. In a bulk cell (cell type 1), we use a
bilinear expansion function (equation (5a)) to model both
components of the current (see Fig. 2(a)). This basis function
is modified for the boundary cells to incorporate the singular
behavior of the current near the edge of the microstrip. This
edge condition, described by Meixner [1], implies that the
component of the current parallel to the edge becomes singular
as 1/+/d, while the transversal component of the current goes
to zero as v/d, d being the distance to the edge. The current
basis functions (equation (5b)) for edge cells (cell type 2) takes
this edge behavior into account, as illustrated in Fig. 2(b).

The modeling of the current in the corner cells (cell types 3
and 4) is chosen such that the square root dependencies of both
longitudinal and transversal components are matched, without
violating the current continuity condition, i.e., current must
be continuous in the direction of current flow. For an inner
corner cell, the current basis function (equation (5¢)) is given
by simply taking the product of both square root dependencies
as illustrated in Fig. 2(c). For an outer corner cell, the matching
is achieved with the use of the special shape function g(z,y)
on which the square root dependencies (equation (5d)) are
superimposed. Fig. 2(d) shows the basis functions used for an
outer corner cell and Fig. 3 shows the special shape function

gz, y).

ba(2,y) = by(z,y) = (1 - D%) (1 - —g;) (S2)

bo(z,t) = <1 _ Di> (1 ) Diy)_l/?
ve=(-5)(-5)

8

(5b)
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Fig. 2. The current expansion functions for the four types of grid celis.
(a) Bulk cell. (b) Edge cell. (c) Inner corner cell. (d) Outer corner cell.

Fig. 3. Special shape function g(z, y) used to match the square root depen-
dencies of the current components in an outer corner cell.
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IV. EVALUATION OF THE CELL—CELL COUPLING ELEMENTS

The calculation of the Z-matrix elements is crucial to the
solution of the EFIE. The general form of these elements is

227 = lim / / dStyi(r) / / ds’
z—d | [Jg, s,

. Gfﬂ(r,r')bgyj(r’)
a’/B = x?y. (7)

The two space-domain integrations over the observation and
excitation cell can be carried out numerically for most of the
cell—cell pairs, using simple Gaussian quadrature formulas.
However, the elements for which the test and basis functions
coincide (self-patch coupling) or overlap (nearest neighbor
coupling) must be calculated analytically, in order to take the
Green’s dyadic singularities correctly into account.

In [6] it is shown that the electric field Green’s dyadic can
be derived from two scalar functions Wy (p, 2) and Wa(p, z).
The four tangential components needed in our simulation are
given by

[Gf@ ny}

WO(p7 Z) - W?(pa Z) cos 26
—Wa(p, z) sin 260

—Wa(p, z) sin 26
Wo(p, z) + Wa(p, 2) cos 2

®)

where r—r’ = p(cosbu, +sinfu,) + (2 — d)u,. Polar
coordinates (p,§) are used to denote the lateral separation
between the excitation and the observation point. The
numerical procedure described in [6] makes the calculation
of the Green’s dyadic possible for layered structures with an
arbitrary number of lossless and/or dielectric and magnetic
layers.
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In general, the Green’s functions Wy(p, z) and Ws(p, 2)
exhibit a singularity for p = 0. This singular term is extracted
analytically. The remaining regular parts, given as a Sommer-
feld type of integral, are precalculated for a small number of p
values and tabulated in a database. A second-order Lagrange
interpolation scheme is used to retrieve the results from this
database, for any value of p. A powerful advantage of this
technique is the ability to model multilayered substrates by
simply replacing the database for the single-layered Green’s
dyadic by the database for the multilayered Green’s dyadic.

The general results in [6] for the singular parts of the
W.(p, z) functions lead to

p2 _ 262
(0% +82)°"2
+ (92 + 91)

W5 (p,2) = g3
1

(o2 +62)

_3p2

(p? + 62)°/?

G

W5 (p, 2) = g3

+ (92 — g1) 2%+ 7)) ©
where
_ e
q J AT 1+ o
o = jwug l—l—egur
g = —j 12
A (1 +e,)?
1 1
= - —_ 10
g3 J drweg 1 + &, (10)
In (9) 6 = 2z — d represents a small distance above the

microstrip structure and g1, g2, and g3 are complex coefficients
depending only on the frequency and the complex relative
permittivity and permeability of the microstrip substrate. The
terms in (9) depending on g3 give rise to a 1/p® singularity, as
6 goes to zero. The other terms give rise to a 1/p singularity.

The contribution to the cell-cell coupling associated with
the regular part of the Green’s dyadic presents no calculational
difficulties and can easily be computed numerically. For the
evaluation of the self-patch and nearest neighbor coupling
terms, the contributions coming from the singular part must
be calculated analytically. At this point however, it can be
seen that it is not allowed to interchange the integrations in
the self-patch and nearest neighbor integrals and the limiting
process 6 — 0, as this leads to divergent results for the
1/p? singularity. In order to evaluate these integrals correctly,
it is necessary to start form the values (9) with § # 0.
One of the two space-domain integrations in (7) must be
performed analytically at a small distance § above the planar
structure. It is obvious that the integration over the observation
cell is performed first, as the simple pulse test functions
are much easier to deal with than the current expansion
functions. We therefore interchange the integration over the
excitation cell with the integration over the observation cell.
For the contribution of the singular part, expression (7) is
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replaced by

Zgpoind — / /S dS'bg,;(r")

7

-{lim / / dSGbeing(r,r’)ta,z(r)}. (11)
z—d s,

The use of simple pulse test functions {t, ;(r) = 1,0 = z,y,
i = 1,---,M} allows the second integral in (11) to be
calculated analytically with 6 # 0. After this step, the limit
6 — 0 can be carried out, yielding a nondivergent excitation
integral. Results of these calculations are given in the Ap-
pendix for an observation cell of general polygonal shape. In
the final step, the excitation integral is calculated numerically
using simple Gaussian quadrature formulas for the bulk cells
and appropriate Gauss—Jacobi quadrature formulas for the
boundary cells, taking the special square root edge behavior
of the current basis functions into account.

V. NUMERICAL RESULTS

A. Microstrip Stub

The presented technique has been applied to characterize the
microstrip stub configuration shown in the inset of Fig. 4(a).
This structure is found in several publications [8], [9]. The mi-
crostrip single stub contains two discontinuities: a T-junction
and an open end. It is printed on an alumina substrate with
thickness d = 1.27 mm and relative dielectric constant &, =
10.65. The line width W and the stub length L are equal
to 1.4 and 2.1 mm, respectively. Fig. 4(a) shows the phase
and Fig. 4(b) the magnitude of the simulated Sy scattering
parameter. Also included in the plot are the results from
previously published data obtained with the spectral-domain
technique [8] and from measurements [8]. As shown in Fig. 4,
the agreement between our technique and the measurements
is very good. The resonance frequency of the microstrip stub
lays just beyond 10 GHz, which is predicted correctly by the
simulation results.

The full-wave analysis presented in this paper includes all
high-frequency effects such as coupling, radiation, and surface
waves. Radiation losses form open microstrip circuits can be
significant at microwave and millimeter-wave frequencies. To
illustrate this radiation effect, Fig. 4(b) shows the quantity
G = ]S’11|2 + |S21|2, which follows from the full-wave
analysis. (1 — G) represents the fraction of incident power
lost in the microstrip discontinuity. For a lossless substrate,
this power loss is totally due to radiation. The plot of G shows
that in the considered frequency range, the calculated radiation
loss reaches a peak of about 27% just below 11 GHz.

B. Microstrip Bend

The next example discussed here is the analysis of the
microstrip bend discontinuity shown in Fig. 5. It was mainly
chosen for further verification of our technique by comparison
with measurements. The epoxy substrate has a thickness of
d = 1.6 mm and a relative dielectric constant £, = 4.5.
The width W of the microstrip is 3 mm. The magnitudes of

1585
0[] | 1 |
|
. * RP1=I RP2
w : : ] ’/"::-"'BQ S
— i 5
Q 1 : I_'— 4 \\
Q
g W - {
3 0
: {
E: # s,
-90
1.5 8.5 9.5 10.5 115 12.5
Frequency (GHz)
@
1.0
-\\
* e 2 2
i iz, N 1S5)1% 18!
08 P11 R ek
306 AR 74
2
E . /
= 0.4
%, | Saf [
T™\%
this work \\ K
0.2} — = = = spectral domain oy
............ measurements 7
o | | | |
1.5 85 9.5 10.5 115 12.5
Frequency (GHz)

®)

Fig. 4. Scattering parameters of a microstrip single stub calculated with the
spatial and the spectral domain technique [8]. (a) Phase of S2;. (b) Magnitude
of S31 and |S11|2 + |521|2-

the scattering parameters S1; and Sg; are shown in Fig. 5(a).
The value of G = |S11|% + |Sa1|* is plotted in Fig. 5(b). The
results are compared with published data calculated with the
finite-difference time-domain technique [14] and with mea-
surements [14]. Again the agreement with the experimental
results is found to be very good, which validates the theoretical
results. The oscillations in the experimental plots are due to the
imperfect connector-strip transition. The difference between
G and unity shows that at the considered frequencies, an
important part of the incident power is radiated by the corner
into space and surface waves.

C. Double-Loop Meander Line

The third example considers the double loop meander line
configuration presented by Wertgen and Jansen [10]. The
structure is printed on a 25-mil standard alumina substrate
of measured relative dielectric constant ¢, = 9.978 with
unknown precision, i.e., no +/— tolerance is specified in [10].
The other relevant parameters are W = 0.61 mm, S = W/2,
and L = 4W. Multiloop meander lines are frequently used in
the design of traveling-wave FET amplifiers for their slow-
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Fig. 5. Scattering parameters of a microstrip bend. (a) Magnitude of S
and S5;. (b) Magnitude of [511|2 + |S21|2.

wave properties. The meander line contains several tightly
coupled 90° bends. The electromagnetic coupling between two
bends, spaced by only half a substrate thickness or less, has
a very important effect on the slow-wave properties of the
structure.

The results of the numerical simulation are presented in
Fig. 6(a)—(c). Also shown in Fig. 6 are theoretical results
obtained with a closed-box spectral domain technique [10]
and open experimental data [10]. The agreement between
the numerical results and the experimental data is very good
in the whole frequency range. In addition, it can be seen
that the closed-box simulation results show some deviations
form the measured plots, especially for frequencies beyond
11 GHz. These deviations are mainly due to the absence of
radiation losses in the closed-box simulation technique. This
is confirmed by the plot of |S11|*+ |Sa1|* (Fig. 6(c)). It shows
that the power loss due to radiation becomes significant (>5%)
for frequencies beyond 11 GHz.

VI. CONCLUSIONS

A full-wave space-domain technique has been presented
for the simulation of the high-frequency S parameters of
microstrip discontinuities. This technique is based on the
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electric field integral equation for the surface current on the
microstrip structure. A suitable electric field Green’s dyadic
describes the layered medium in which the microstrip structure
is embedded. The database approach of this Green’s dyadic
makes the technique very efficient.

To solve the integral equation, the method of moments was
applied. A correct handling of the self-patch and nearest neigh-
bor coupling was only possible starting from the analytical
knowledge of the singular behavior of the Green’s dyadic.
The current basis functions, used to model the surface current
density in the microstrip structure, incorporate the singular
edge behavior of the current.

The numerical results focus on some simple microstrip dis-
continuities for which published results exist. The comparison
of our results with the published data allowed the validation of
the proposed technique. Future research will be focused on an
extensive comparison of the current basis functions introduced
in this paper (bilinear including the singular edge behavior)
with the more traditional rooftop basis functions.

APPENDIX

The following integrals are involved in the calculation of
the observation integrals (11):

An () = / [ dS%
Alg(r’)z(r')z// dS—l—cos20

Alg(r')—// dS—— sin 26
=g | | 45,252

@+

)= i | [ 450

2
N1 p .
Ass(r)_%l—%//sz dS————————(p2_’_52)5/2 sin 26 .

The limiting operation § — 0 has been carried out for the
integrals of the first column, as the 1/p singularity can be
integrated analytically over the observation cell. This however
cannot be done for the integrals of the second column. The
1/p% singularity is too strong to be integrated directly. The
integrals in (A1) are calculated using the polar coordinates
introduced in (8). The integration domain S; (which can be
of general polygonal shape) is divided into a finite number of
oriented triangles S’ ™) , as indicated in Fig. 7(a) for a general
quadrangle.

The results of the integrations over the oriented triangle
s;" (m) are given below. The relevant parameters of the oriented
triangle S;™ ™) used here are illustrated in Fig. 7(b). L(m) is the
distance between »' and side m of the observation cell S..

Au() =" o™ ()
App(r) = Z [(agm)(r') - o™ (r’)) cos 265™

m

cos 26

(A1)
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Fig. 7. (a) The observation cell S, is divided into a finite number of

oriented triangles. (b) Relevant parameters of the oriented triangle Sl(m) in
the (z-2',y—y') coordinate system.

- a:(,,m) (r")sin 20(()m)]
Auslr) = | (70 - o)) sin265"
m
af;") (r") cos 29(()7”)] (A2)
with
o™ () = L§™

[ cos (0§m) - 0(()"”)) (1 + sin (0;"’) - 9(()'")»
| cos (05”” - 0(({")) (1 +sin (0§"‘) — 03”‘)))
o™ (r') = 2L

. -sin(ﬁgm) - 0(()7")) - sin(ﬁgm) — 0(()’"))]

a:(,m) (r) = —-2L(()m)

. [cos(ﬂgm) — 9(()’")) — cos (a§m> — 6((,"‘))]

(A3)
An() =Y 8™ ()
Aaals') = Y| (8570 + A7) sin 26
(m) (r')sin 20( )]

Ass(r') = Z [( B ¢y + B (o ) cos 265™

+85™ (') sin 20("’)} (Ad)
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with
e
:sin (eg’") — 0(()m)) — gin (05"1) — Gém))]
my, w2
0 = e
i (65 = §™) — sin® (6™ — 60
() = 5]3%—,,;)
cos® (Hgm) - 9(()'")) — cos (0§"‘> — ™ )] .
' (A5)
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